Large language models (LLMs) have shown impressive results across a variety of tasks while requiring little or no direct supervision. Further, there is mounting evidence that LLMs may have potential in information-seeking scenarios. We believe the ability of an LLM to attribute the text that it generates is likely to be crucial for both system developers and users in this setting. We propose and study Attributed QA as a key first step in the development of attributed LLMs. We develop a reproducable evaluation framework for the task, using human annotations as a gold standard and a correlated automatic metric that we show is suitable for development settings. We describe and benchmark a broad set of architectures for the task. Our contributions give some concrete answers to two key questions (How to measure attribution?, and How well do current state-of-the-art methods perform on attribution?), and give some hints as to how to address a third key question (How to build LLMs with attribution?).
translated by 谷歌翻译
By transferring knowledge from large, diverse, task-agnostic datasets, modern machine learning models can solve specific downstream tasks either zero-shot or with small task-specific datasets to a high level of performance. While this capability has been demonstrated in other fields such as computer vision, natural language processing or speech recognition, it remains to be shown in robotics, where the generalization capabilities of the models are particularly critical due to the difficulty of collecting real-world robotic data. We argue that one of the keys to the success of such general robotic models lies with open-ended task-agnostic training, combined with high-capacity architectures that can absorb all of the diverse, robotic data. In this paper, we present a model class, dubbed Robotics Transformer, that exhibits promising scalable model properties. We verify our conclusions in a study of different model classes and their ability to generalize as a function of the data size, model size, and data diversity based on a large-scale data collection on real robots performing real-world tasks. The project's website and videos can be found at robotics-transformer.github.io
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
人工智能的最新趋势是将验证的模型用于语言和视觉任务,这些模型已经实现了非凡的表现,但也令人困惑。因此,以各种方式探索这些模型的能力对该领域至关重要。在本文中,我们探讨了模型的可靠性,在其中我们将可靠的模型定义为一个不仅可以实现强大的预测性能,而且在许多涉及不确定性(例如选择性预测,开放式设置识别)的决策任务上,在许多决策任务上表现出色,而且表现良好。强大的概括(例如,准确性和适当的评分规则,例如在分布数据集中和分发数据集上的对数可能性)和适应性(例如,主动学习,几乎没有射击不确定性)。我们设计了40个数据集的10种任务类型,以评估视觉和语言域上可靠性的不同方面。为了提高可靠性,我们分别开发了VIT-PLEX和T5-PLEX,分别针对视觉和语言方式扩展了大型模型。 PLEX极大地改善了跨可靠性任务的最先进,并简化了传统协议,因为它可以改善开箱即用的性能,并且不需要设计分数或为每个任务调整模型。我们演示了高达1B参数的模型尺寸的缩放效果,并预处理数据集大小最多4B示例。我们还展示了PLEX在具有挑战性的任务上的功能,包括零射门的开放式识别,主动学习和对话语言理解中的不确定性。
translated by 谷歌翻译
Sockeye 3是神经机器翻译(NMT)的Mockeye工具包的最新版本。现在,基于Pytorch,Sockeye 3提供了更快的模型实现和更高级的功能,并具有进一步的简化代码库。这可以通过更快的迭代,对更强大,更快的模型进行有效的培训以及快速从研究转移到生产的新想法的灵活性,从而实现更广泛的实验。当运行可比较的型号时,Sockeye 3的速度比GPU上的其他Pytorch实现快126%,在CPU上的实现速度高达292%。Sockeye 3是根据Apache 2.0许可发布的开源软件。
translated by 谷歌翻译
当代人工神经网络(ANN)是经过训练的端到端,共同学习功能和分类器以完成感兴趣的任务。尽管非常有效,但这种范式在组装带注释的特定任务数据集和培训大规模网络方面施加了巨大的成本。我们建议通过引入视觉生物标志物分类的辅助预任务来将特征从下游肺超声任务中学习。我们证明,通过培训模型来预测生物标记标签,可以从超声视频中学习一个内容丰富,简洁和可解释的功能空间。值得注意的是,可以从弱视频尺度监督注释的数据中培训生物标志物功能提取器。这些功能可以由针对各种临床任务的各种下游专家模型(诊断,肺严重程度,S/F比)使用。至关重要的是,特定于任务的专家模型的准确性与直接训练此类目标任务的端到端模型相当,同时训练成本大大降低。
translated by 谷歌翻译
神经网络的越来越大的规模及其越来越多的应用空间对更高的能量和记忆有效的人工智能特定硬件产生了需求。 venues为了缓解主要问题,von neumann瓶颈,包括内存和近记忆架构,以及算法方法。在这里,我们利用磁隧道结(MTJ)的低功耗和固有的二进制操作来展示基于MTJ的无源阵列的神经网络硬件推断。通常,由于设备到装置的变化,写入误差,寄生电阻和非前沿,在性能下将训练的网络模型转移到推动的硬件。为了量化这些硬件现实的效果,我们将300个唯一重量矩阵解决方案的23个唯一的重量矩阵解决方案进行分类,以分类葡萄酒数据集,用于分类准确性和写真保真度。尽管设备不完美,我们可以实现高达95.3%的软件等效精度,并在15 x 15 MTJ阵列中正确调整具有一系列设备尺寸的阵列。此调谐过程的成功表明,需要新的指标来表征混合信号硬件中再现的网络的性能和质量。
translated by 谷歌翻译
剪辑在零拍传输学习任务上产生了令人印象深刻的结果,并被视为BERT或GPT3等基础模型。具有丰富表示形式的剪辑视觉模型是使用Infonce目标和自然语言监督对特定任务进行微调之前进行预训练的。尽管剪辑在零拍传输学习方面表现出色,但它遭受了解释的问题,也就是说,它的重点是一个或几个功能,同时忽略了其他相关功能。该问题是由于原始多模式数据中未充分提取协方差结构而引起的。我们建议使用现代Hopfield网络来解决解释的问题。他们检索到的嵌入具有富集的协方差结构,该结构源自存储嵌入中特征的共发生。但是,现代的Hopfield网络增加了阻碍学习的Infonce目标的饱和效应。我们建议使用Infoloob目标来减轻这种饱和效果。我们介绍了小说``对比抛弃了一个增压'(Cloob),该小说使用现代的Hopfield网络与Infoloob Opportions一起进行协方差丰富。在实验中,我们将Cloob与概念标题进行预培训后的剪辑和YFCC数据集进行了比较,相对于其在其他数据集上的零拍传输学习性能。 Cloob在所有考虑的架构和数据集中始终在零摄像转移学习上胜过剪辑。
translated by 谷歌翻译
现代软件系统和产品越来越依赖机器学习模型,以基于与用户和系统的交互进行数据驱动的决策,例如计算基础架构。对于更广泛的采用,这种做法必须(i)容纳没有ML背景的软件工程师,并提供(ii)提供优化产品目标的机制。在这项工作中,我们描述了一般原则和特定的端到端毫升平台,为决策和反馈集合提供易于使用的API。循环仪支持从在线数据收集到模拟培训,部署,推理的完整端到端ML生命周期,并扩展支持和调整产品目标的评估和调整。我们概述了平台架构和生产部署的整体影响 - 循环仪当前托管700毫升型号,每秒达到600万决定。我们还描述了学习曲线并总结了平台采用者的经验。
translated by 谷歌翻译
最佳决策要求分类器产生与其经验准确性一致的不确定性估计。然而,深度神经网络通常在他们的预测中受到影响或过度自信。因此,已经开发了方法,以改善培训和后HOC期间的预测性不确定性的校准。在这项工作中,我们提出了可分解的损失,以改善基于频流校准误差估计底层的钻孔操作的软(连续)版本的校准。当纳入训练时,这些软校准损耗在多个数据集中实现最先进的单一模型ECE,精度低于1%的数量。例如,我们观察到ECE的82%(相对于HOC后射出ECE 70%),以换取相对于CIFAR-100上的交叉熵基线的准确性0.7%的相对降低。在培训后结合时,基于软合成的校准误差目标会改善温度缩放,一种流行的重新校准方法。总体而言,跨损失和数据集的实验表明,使用校准敏感程序在数据集移位下产生更好的不确定性估计,而不是使用跨熵损失和后HOC重新校准方法的标准做法。
translated by 谷歌翻译